Crystal Structure

Communications

ISSN 0108-2701

Complexes of $\mathbf{A g}^{1}$ with cationic ligands: bis[(pyridylmethyl)ammonio]silver(I) salts

Sunkari Sailaja, G. Swarnabala and M. V. Rajasekharan*
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
Correspondence e-mail: mvrsc@uohyd.ernet.in

Received 10 April 2001
Accepted 23 July 2001
Bis[(2-pyridylmethyl)ammonio]silver(I) trinitrate, $\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{9}-\right.\right.$ $\left.\left.\mathrm{N}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{3}$, (I), and bis\{bis[(4-pyridylmethyl)ammonio]silver(I)\} hexakis(perchlorate) dihydrate, $\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\right]_{2}-$ $\left(\mathrm{ClO}_{4}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (II), are rare examples of complexes with cationic ligands. In (I), the Ag^{+}cation has a T-shaped [2+1] coordination involving the pyridine N atoms and a nitrate O atom, while in (II) there are three independent twocoordinate Ag complex cations (two with the Ag atoms on independent inversion centres) and disordered ClO_{4}^{-}ions. The crystal structures reveal the role of hydrogen bonding in stabilizing these complexes.

Comment

Cationic ligands are much less common than anionic or neutral ligands. Examples of structurally characterized metal complexes belong to four categories: (i) the well known tropylium cation (Cotton \& Wilkinson, 1988), (ii) thiaminesubstituted ligands (Louloudi \& Hadjiliadis, 1994), (iii) the quaternary ammonium ion, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$(Stucky \& Ross, 1969), and (iv) the protonated phosphinoalkyl amine, $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$(Cecconi et al., 1984). Protonation of the primary amine side chain of an N -heterocyclic compound leads to another class of such ligands. Complexes of these ligands are expected to have added stability due to hydrogen bonding with anions. In this paper, we report the crystal structures of two such complexes, namely bis[(2-pyridylmethyl)ammonio]silver(I) trinitrate, (I), and bis\{bis[(4pyridylmethyl)ammonio]silver(I)\} hexakis(perchlorate) dihydrate, (II).

The asymmetric unit of compound (I) is made up of two protonated ligands bound to Ag with a near-linear geometry $\left[\mathrm{N} 1-\mathrm{Ag}-\mathrm{N} 3=165.76(11)^{\circ}\right]$. A nitrate O atom is also weakly bonded to Ag , leading to a T-shaped $\mathrm{AgN}_{2} \mathrm{O}$ coordination, with all four atoms nearly coplanar [r.m.s. deviation for the mean plane $=0.041 \AA$]. All non- H atoms in the two aromatic ligands, except for one ammonium N atom (N 2) and the Ag atom, form another mean plane, with an r.m.s. deviation of $0.056 \AA$. What is remarkable is that the two ligands are in a
'syn' configuration, which brings the two $\mathrm{NH}_{3}{ }^{+}$groups close together. This seemingly less stable arrangement is stabilized by an array of $\mathrm{NO}_{3}{ }^{-}$ions arranged in a semicircular fashion around the $\mathrm{NH}_{3}{ }^{+}$groups, forming numerous hydrogen bonds (Table 2).

(I)

(II)

The asymmetric unit of compound (II) contains three Ag atoms. Ag 1 and Ag 3 are situated on inversion centres and are coordinated to two protonated ligands, whereas Ag 2 is coordinated to two crystallographically independent protonated ligands, with a linear geometry $\left[\mathrm{N} 3-\mathrm{Ag} 2-\mathrm{N} 5=174.8(3)^{\circ}\right]$ around Ag 2 . There are six anions in the unit cell and all were found to be disordered. The disorder was modelled by splitting

Figure 1
The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and ring H atoms have been omitted for clarity. Important hydrogen bonds are shown as broken lines [symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1+x, y, z$; (iii) $\left.1+x, \frac{1}{2}-y, \frac{1}{2}+z\right]$.

(b)

(c)

Figure 2
The molecular structures of the three different complex cations in (II) with the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and ring H atoms have been omitted for clarity. Only part of each disordered $\mathrm{ClO}_{4}{ }^{-}$ion is shown, with the disordered O atoms represented by circles. Important hydrogen bonds are shown as broken lines. Symmetry codes: in (a), (i) $-x, 1-y, 1-z$; in (b), (i) $1-x, y-1, z$; (ii) $-x$, $-x, 1-y,-z$; (iii) $1-x,-y,-z$; (iv) $x-1, y, z$; in (c), (i) $1-x, 1-y,-z$.
each perchlorate O atom into two parts, which were refined isotropically. As in the case of (I), all 18 ammonio H atoms in (II) are involved in hydrogen-bonding interactions with the anions (Table 4).

In both structures, the number of potential hydrogen-bond acceptor atoms is higher than the number of 'acidic' H atoms. This leads to numerous three-centre (bifurcated-donor type) hydrogen bonds. However, the available number of acceptor atoms is limited by crystal-packing constraints. In (I), six out of nine O atoms, and in (II), nine out of $24 \mathrm{ClO}_{4}{ }^{-} \mathrm{O}$ atoms and
two water O atoms, are able to act as acceptors. In contrast with the usual situation, where hydrogen bonding inhibits positional disorder, all the $\mathrm{ClO}_{4}{ }^{-}$ions in (II) are disordered. It appears that this unusual situation is a consequence of the small number of available acceptors.

Experimental

Compound (I) was synthesized by slowly adding, with stirring, a solution of $2-\mathrm{amp}$ [$0.2 \mathrm{ml}, 1.9 \mathrm{mmol}$; amp is (aminomethyl)pyridine]
in $0.1 \mathrm{~N} \mathrm{HNO}_{3}(5 \mathrm{ml})$ to an aqueous solution of $\mathrm{AgNO}_{3}(5 \mathrm{ml}$, $0.108 \mathrm{~g}, 0.64 \mathrm{mmol}$). Crystals of (I) were obtained by leaving the solution to stand at 277 K for several days. Identical crystals were also obtained when $\mathrm{Ag}(2-\mathrm{amp}) \mathrm{NO}_{3}$ (Swarnabala \& Rajasekharan, 1997) was recrystallized from $0.1 \mathrm{NHNO}_{3}$. Compound (II) was synthesized by dissolving polymeric $\mathrm{Ag}(4-\mathrm{amp}) \mathrm{ClO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Sailaja \& Rajasekharan, 2000) in $0.1 \mathrm{~N} \mathrm{HClO}_{4}$. Single crystals of (II) were obtained by slow evaporation of the acid solution at 277 K .

Compound (I)

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{3}$
$M_{r}=512.20$
$\mathrm{Monoclinic}, P 2_{1} / c$
$a=8.854(2) \AA$
$b=19.752(12) \AA$
$c=10.662(7) \AA$
$\beta=93.86(3) \AA$
$V=1860.7(16) \AA^{\circ}$
$Z=4$
$D_{x}=1.828 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=7.8-13.7^{\circ}$
$\mu=1.15 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rhombic, light yellow
$0.45 \times 0.25 \times 0.09 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: semi-

$$
R_{\mathrm{int}}=0.049
$$

$$
\theta_{\max }=25^{\circ}
$$

$$
h=0 \rightarrow 10
$$ empirical (North et al., 1968)

$$
k=0 \rightarrow 23
$$

$$
l=-12 \rightarrow 12
$$ $T_{\text {min }}=0.831, T_{\text {max }}=0.999$ 3481 measured reflections

3259 independent reflections
2655 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
2 standard reflections frequency: 60 min intensity decay: none
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.093$
$S=1.11$
3259 reflections
288 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Ag}-\mathrm{N} 1$	$2.217(3)$	$\mathrm{Ag}-\mathrm{O} 2$	$2.526(3)$
$\mathrm{Ag}-\mathrm{N} 3$	$2.224(3)$		
$\mathrm{N} 1-\mathrm{Ag}-\mathrm{N} 3$	$165.76(11)$	$\mathrm{N} 3-\mathrm{Ag}-\mathrm{O} 2$	$90.70(11)$
$\mathrm{N} 1-\mathrm{Ag}-\mathrm{O} 2$	$102.41(12)$		

Table 2
Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-HN21..O7	0.86 (5)	2.04 (5)	2.860 (5)	160 (4)
N2-HN21..O9	0.86 (5)	2.49 (5)	3.129 (6)	132 (4)
N2-HN22...O4	0.83 (6)	2.33 (6)	3.151 (6)	168 (6)
N2-HN22 . ${ }^{\text {O }} 6$	0.83 (6)	2.40 (6)	2.910 (6)	120 (5)
$\mathrm{N} 2-\mathrm{HN} 23 \cdots \mathrm{O} 1^{\text {i }}$	0.97 (7)	1.91 (7)	2.858 (6)	165 (5)
N4-HN41 . ${ }^{\text {O }} 7$	0.90 (6)	1.94 (6)	2.818 (6)	163 (5)
N4-HN42 . ${ }^{\text {O }} 4^{\text {ii }}$	0.82 (4)	2.35 (4)	3.051 (8)	145 (4)
N4-HN43 . OOS ${ }^{\text {iii }}$	0.88 (9)	2.17 (9)	2.867 (5)	137 (7)
$\mathrm{N} 4-\mathrm{HN} 43 \cdots \mathrm{O} 9^{\text {iv }}$	0.88 (9)	2.55 (8)	3.162 (8)	128 (7)

Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1+x, y, z$; (iii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

Compound (II)

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\right]_{2}\left(\mathrm{ClO}_{4}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1285.08$
Triclinic, $P \overline{1}$
$a=11.3358$ (7) \AA
$b=14.5436$ (10) \AA
$c=14.6015(17) \AA$
$\alpha=77.700(8)^{\circ}$
$Z=2$
$\alpha=77.700(8)^{\circ}$
$\beta=89.519(6)^{\circ}$
$\gamma=74.421(6)^{\circ}$
$V=2262.5(3) \AA^{3}$
$Z=2$
$D_{x}=1.886 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=15.0-17.5^{\circ}$
$\mu=1.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular, colourless
$0.44 \times 0.44 \times 0.32 \mathrm{~mm}$

Table 3
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.175(5)$	$\mathrm{Ag} 2-\mathrm{N} 3$	$2.136(5)$
$\mathrm{Ag} 1-\mathrm{N} 1$	$2.175(5)$	$\mathrm{Ag} 3-\mathrm{N} 7$	$2.142(5)$
$\mathrm{Ag} 2-\mathrm{N} 5$	$2.133(5)$	$\mathrm{Ag} 3-\mathrm{N} 7^{i i}$	$2.142(5)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{~N} 7-\mathrm{Ag} 3-\mathrm{N} 7^{\mathrm{ii}}$	180
$\mathrm{~N} 3-\mathrm{Ag} 2-\mathrm{N} 5$	$175.0(2)$		

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 1-y,-z$.

Table 4
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{HN} 21 \cdots \mathrm{O} 1 B^{\text {i }}$	0.87	2.24	2.89 (2)	132
$\mathrm{N} 2-\mathrm{HN} 21 \cdots \mathrm{O} 13 A^{\text {i }}$	0.87	2.32	3.002 (10)	135
$\mathrm{N} 2-\mathrm{HN} 21 \cdots \mathrm{O} 13 B^{\mathrm{i}}$	0.87	2.38	2.93 (2)	122
N2-HN21 \cdots O11 $A^{\text {ii }}$	0.87	2.62	3.328 (14)	140
N2-HN22 . O O 5 A	0.87	2.19	3.058 (11)	171
N2-HN22 \cdots O6B	0.87	2.32	2.93 (2)	128
$\mathrm{N} 2-\mathrm{HN} 23 \cdots \mathrm{O} 18 B^{\text {iii }}$	0.87	2.10	2.92 (2)	157
$\mathrm{N} 2-\mathrm{HN} 23 \cdots \mathrm{O} 20 B^{\text {iii }}$	0.87	2.35	3.16 (2)	154
$\mathrm{N} 2-\mathrm{HN} 23 \cdots \mathrm{O} 18 A^{\text {iii }}$	0.87	2.53	3.33 (2)	153
N4-HN41 \cdots O6 A	0.87	2.20	2.842 (11)	130
N4-HN41 \cdots O20 $A^{\text {iii }}$	0.87	2.23	2.844 (13)	128
$\mathrm{N} 4-\mathrm{HN} 41 \cdots \mathrm{O} 20 B^{\text {iii }}$	0.87	2.29	2.981 (17)	137
N4-HN41 \cdots O6B	0.87	2.34	2.973 (18)	130
N4-HN42 ${ }^{\text {a }}$ O22 $B^{\text {iii }}$	0.87	1.86	2.68 (2)	155
N4-HN42 ${ }^{\text {a }}$ O22 $A^{\text {iii }}$	0.87	2.11	2.978 (14)	177
N4-HN43 \cdots OW1 ${ }^{\text {i }}$	0.87	2.02	2.865 (8)	163
N6-HN61 \cdots O1 $B^{\text {iv }}$	0.87	2.10	2.91 (2)	155
N6-HN61 \cdots O $1 A^{\text {iv }}$	0.87	2.37	3.091 (10)	140
N6-HN61 \cdots O13 $A^{\text {iv }}$	0.87	2.48	3.057 (13)	124
N6-HN61 \cdots O2 $A^{\text {iv }}$	0.87	2.52	2.954 (10)	112
N6-HN62 . O O 2	0.87	1.95	2.814 (8)	170
N6-HN63 \cdots O17 $A^{\text {v }}$	0.87	2.19	3.058 (13)	175
N6-HN63..O17 ${ }^{\text {v }}$	0.87	2.26	3.118 (16)	171
N8-HN81 \cdots O13 ${ }^{\text {vi }}$	0.87	2.16	2.97 (2)	154
N8-HN81 \cdots O15 ${ }^{\text {vi }}$	0.87	2.25	3.00 (2)	144
N8-HN81 \cdots O13 $A^{\text {vi }}$	0.87	2.28	3.081 (11)	153
N8-HN81 \cdots O15 ${ }^{\text {vi }}$	0.87	2.46	3.219 (14)	146
N8-HN82 \cdots O9 ${ }^{\text {vii }}$	0.87	1.96	2.758 (18)	151
N8-HN82 \cdots O $9 A^{\text {vii }}$	0.87	2.50	3.225 (12)	142
N8-HN83 . OOW1	0.87	2.00	2.866 (9)	171
$\mathrm{OW} 1-\mathrm{H} W 11 \cdots \mathrm{O} 23 A^{\text {viii }}$	0.93 (5)	2.07 (7)	2.796 (17)	134 (8)
$\mathrm{OW} 1-\mathrm{H} W 11 \cdots \mathrm{O} 23 B^{\text {viii }}$	0.93 (5)	2.35 (6)	3.22 (2)	156 (8)
$\mathrm{O} W 1-\mathrm{H} W 11 \cdots \mathrm{O} 21 A^{\text {viii }}$	0.93 (5)	2.50 (8)	3.105 (18)	123 (7)
$\mathrm{O} W 1-\mathrm{H} W 12 \cdots \mathrm{O} 14 A^{\text {viii }}$	0.95 (5)	2.03 (7)	2.830 (12)	141 (7)
OW1-HW12 . ${ }^{\text {O }}$ 14 $B^{\text {viii }}$	0.95 (5)	2.10 (8)	2.87 (2)	138 (7)
$\mathrm{O} W 2-\mathrm{H} W 21 \cdots \mathrm{O} 15 A^{\text {vii }}$	0.91 (5)	2.58 (10)	3.031 (12)	111 (7)
OW2-HW22 . ${\mathrm{O} 24 B^{\text {vii }}}^{\text {vin }}$	0.88 (5)	2.14 (6)	2.942 (19)	151 (8)
OW2-HW22 . $\mathrm{O} 24 A^{\text {vii }}$	0.88 (5)	2.20 (7)	3.026 (19)	155 (8)
OW2-HW22 . $\mathrm{O} 21 A^{\text {vii }}$	0.88 (5)	2.42 (6)	3.178 (17)	144 (7)

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1,1+y, z$; (iii) $-x, 1-y,-z$; (iv) $1+x, y-1, z$;
(v) $1-x,-y,-z$; (vi) $1-x, 2-y,-z$; (vii) $1-x, 1-y,-z$; (viii) $1+x, y, z$.

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: semiempirical (North et al., 1968) $T_{\text {min }}=0.915, T_{\text {max }}=0.982$ 8138 measured reflections
7939 independent reflections 5117 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.181$
$S=1.04$
7939 reflections
605 parameters
H atoms treated by a mixture of
\quad independent and constrained
\quad refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.181$
$S=1.04$
7939 reflections
605 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& R_{\text {int }}=0.009 \\
& \theta_{\max }=25^{\circ} \\
& h=-4 \rightarrow 13 \\
& k=-16 \rightarrow 17 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 90 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1016 P)^{2}\right. \\
& \quad+1.328 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.021 \\
& \Delta \rho_{\max }=0.78 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.58 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0067(7)
\end{aligned}
\end{aligned}
$$

For compound (I), the ammonio H atoms were located from difference maps and refined isotropically. Other H atoms were located by geometrical considerations and refined using a riding model with common isotropic displacement parameters, which were refined. For compound (II), the water H atoms were located from difference maps and bond-length constraints were applied. All other H atoms were located by geometrical considerations and refined using a riding model. $U_{\text {iso }}$ values for ammonio H atoms were refined; other H atoms were assigned fixed $U_{\text {iso }}$ values, equal to $1.2 U_{\text {eq }}$ of the parent atom for ring atoms and $1.5 U_{\text {eq }}$ for CH_{2} and $\mathrm{H}_{2} \mathrm{OH}$ atoms.

For both compounds, data collection: CAD-4 Software (EnrafNonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal3.4 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The work was supported by CSIR and DST, New Delhi.
Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1143). Services for accessing these data are described at the back of the journal.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cecconi, F., Ghilardi, C. A., Innocenti, P., Mealli, C., Midollini, S. \& Orlandi, A. (1984). Inorg. Chem. 23, 922-929.

Cotton, F. A. \& Wilkinson, G. (1988). Advanced Inorganic Chemistry, 5th ed., p. 1179. New York: John Wiley.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). Editors. Xtal3.4 User's Guide. University of Western Australia, Perth: Lamb.
Louloudi, M. \& Hadjiliadis, N. (1994). Coord. Chem. Rev. 136, 429-468.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sailaja, S. \& Rajasekharan, M. V. (2000). Inorg. Chem. 39, 4586-4590.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stucky, G. D. \& Ross, F. K. (1969). Inorg. Chem. 8, 2734-2740.
Swarnabala, G. \& Rajasekharan, M. V. (1997). Polyhedron, 16, 921-925.

